首先应明确到底该选用分立元件还是集成电路,这是缩小适用智能照明系统的电源拓扑类型的第一步。分立式实施方案可调谐到特定的系统,所以其成本更低、更灵活,但占用较大的电路板空间且需要专业的设计技术。电源管理IC提供了一种紧凑的解决方法,虽然成本较高,但占用的电路板空间较小,且更易于设计。
其次,根据照明系统对效率的不同要求,设计人员需在线性或开关拓扑之间做出选择。效率的重要性体现在两个方面。首先,功率转换效率越高,功率浪费就越少。第二,减少功率浪费意味着系统产生的热量也更少。线性稳压器比较简单,成本也较低,但通常效率较差。
而开关稳压器由于需要电感器因而更复杂,通常也更昂贵,但其效率较高,不管稳压器的输入输出电压如何,均可取得较高的效率。线性稳压器与开关稳压器既可采用单片IC设计,也可采用分立元件设计。根据照明系统的电源电压,设计人员应相应地选择使用降压、升压或升降压开关拓扑。线性拓扑还有一个缺点就是不能升压。
再次,设计人员必须为智能照明系统选择一个混合信号控制器。HB-LED系统的大部分智能性与灵活性都是由该器件实现的,它甚至还能解决HB-LED调光带来的某些技术难题。因此,选择具有尽可能高的灵活性与尽可能多的有用外设的混合信号控制器是很重要的。通常情况下,一个8位MCU内核足以为大多数照明应用提供足够的处理能力,以及足够的RAM或闪存。
设计人员应特别注意MCU器件上的数字与模拟外设。对于数字外设,专用的硬件调光通道数量及其分辨率和实现不同通信接口的能力都非常重要。调光通道用于驱动降压稳压器,软件计数器虽然也可用来实现这一功能,但软件调光通道会消耗宝贵的处理能力,使器件难以执行其它功能。
智能照明系统通常至少采用8位分辨率以取得较高的色彩精度。如果系统质量要求极高,可采用高达16位的分辨率。但对大多数应用而言,8位分辨率就足够实现所需的精度,设计人员通常在低输出电平情况下通过较高分辨率来实现较好的调光线性。一些设计人员则转而采用更智能的插值法来解决低电平情况下的输出变化问题。
常见的通信接口包括SPI、UART以及I2C,但同样重要的是混合信号控制器也支持DALI、DMX512、射频通信甚至电力线通信等重要的照明接口。就模拟外设而言,设计人员应注意ADC、PGA及比较器。ADC既可通过读取温度传感器值的方式来支持温度反馈,也可实现照明系统与周边环境的多种物理(模拟)方面的智能互动。比较器和PGA可简化电源拓扑的实施方案。
大多数MCU厂商都会在其控制器中部分或全部地提供这些外设,但设计人员可能很快就会发现,随着系统要求的变化,所需的外设品种也会发生相应变化。要想让系统设计做到照顾未来创新技术的前瞻性确实会面临巨大挑战,特别是考虑到HB-LED照明系统本身还是一种新生事物。如果系统需要超高性能,那么FPGA会是一种较好的物超所值的解决方案。具有可配置外设与可路由I/O的控制器可提供最大的灵活性。
实现高质量的白光
虽然每种智能白光和彩色光系统都带有上述组件,但是,基于白光和彩色光的系统在配置与设计方面有所不同。生成白光的照明系统(即便其混有彩色光)需要考虑色温与显色指数。
色温就是指白光的颜色(与直觉不同,暖白光的色温较低,而冷白光的色温较高),它通常与1931 CIE比色图表上的普朗克轨迹相关。色温描述的是标准黑体辐射源被加热到不同温度时所产生的白光颜色(图2)。例如,加热到2500K的标准黑体辐射源被认为是较暖的白光;如果加热到7000K就认为是冷白光。HB-LED系统实际上不能直接实现符合普朗克轨迹的颜色,相反其色温是通过相关色温(CCT)测量的。
图2:普朗克轨迹与色温。
显色指数是通过比较主光源与参考光源之间不同色彩的呈现来描述白光质量的一个参数。通俗地讲,显色指数描述的是主光源以相对参考光源1到100倍的强度照射的物体表面的色彩保真度。通过选择适当的LED、使用适当数量的不同LED通道以及采用混合信号处理器智能地控制这些通道可以调节色温与显色指数。仅包括白光LED的白光系统在色温方面灵活性有限,但在系统的白光LED原生色温下,白光系统的显色指数CRI性能卓越。由于CRI在很大程度上取决于系统中的LED色谱,因此根据经验,LED(特别是不同颜色的LED)越多,CRI就越高。
对彩色光系统而言,设计人员最关心的是色彩精度、色彩分辨率以及可混合色彩的光谱。如前所述,在其中发挥重要作用的一个因素是调光分辨率。最大化可混合色彩的光谱取决于系统中LED生成的色域,它与构成色域的不同LED色彩的数量直接相关。LED数量与调光分辨率还会影响色彩分辨率。大多数彩色光系统最少有三个LED,通常为红绿蓝三原色。如果智能照明系统需要生成特定的目标色彩,那么设计人员可以通过在1931 CIE比色图表上绘制LED并简单地连接绘制点以观察色域来判断所选LED是否能混合该种颜色。如果色域不覆盖目标颜色,那么设计人员可添加新的LED色彩,从而通过扩大色域来包含这种可混合的色彩(图3)。
图3:用4个LED扩展色域的实例。
【想第一时间了解安防行业的重磅新闻吗?请立即关注中安网官方微信(微信号:cpscomcn)——安防行业第一人气微信,万千精彩,千万不要错过!!!
网友评论
共有0条评论 点击查看全部>>24小时阅读排行
本周阅读排行