如前所述,白光和彩色光智能照明系统可以受益于使用三个或更多LED,但是除了在光学技术和散热性能方面面临诸多挑战外,在算法上也会更加复杂。一个明显的挑战就是如何提供达到要求数量且具有灵活调光分辨率的硬件调光通道。使用四个或更多LED的系统也需要更具创造性的算法来调节色温、混合色彩或提高显色指数CRI。
显然,智能照明系统需要通过某种方式管理散热与器件分选。LED不通过辐射散热,而是借助于二极管的结点来传导热量。事实上,随着LED温度的升高,某些LED的流明输出会降低(比如红光就会受到严重影响),甚至光输出波长也会发生偏移。因此,非常重要的一点是要从LED底座尽可能多地传导出热量。
好的散热设计、大量的空气流动及主动制冷对于解决散热问题是个不错的开端。不过,上述方法并非总能确保获得可预期、可测量的效果。热量在系统中总是存在的,而色彩精度会受温度的影响。引入温度传感器有助于将色彩精度保持在的水平。对于需要实现高色彩精度的系统来说,这个额定值是一般性的要求。用于计算彩色光调光值的算法的一个输入参数是光通量输出。通过保存照明系统中温度的分段线性近似值和LED的光通量曲线,混合信号控制器就可以通过适当地改变每个LED的输出大小来保持色彩的精度。
器件分选的原因是,HB-LED是固态器件,采用当前制造工艺时在光通量输出、波长和正向电压方面有变化。由于光通量输出在计算混合色彩中非常重要,因此必须要考虑到这个值的变化。但如果系统对色彩质量要求不高,则不必考虑。
对关注色彩质量的设计人员来说,他们可购买某些更昂贵的特殊LED(售价会高出15%到20%),也可通过混合信号控制器的可编程性进行弥补。设计人员可以输入器件分选表,这种表存储了系统中的LED可能的分选特征。这样,在制造阶段拿到实际LED时,就可以用实际分档代码更新混合信号控制器,并做出相应的补偿。
许多人发现,固态照明技术设计需要综合具备光学、机械和电气设计经验,而很少人有这样的本事,因此新的复杂技术难题不断出现。特别是现在设计人员必须使用混合信号控制器,因此还必须掌握嵌入式设计技术。幸运的是,现在的工具可以提供可视化的设计环境,毋需编写代码就能满足HB-LED智能照明系统的设计需要,设计人员还能利用C语言等传统语言编程。无论如何,出色的开发工具、参考设计和项目实例都是非常重要的。
因此设计人员在发挥HB-LED的智能、灵活性及其环保优势的同时面临着诸多挑战。通过智能照明设计方法,设计人员可经济有效地减少或消除大多数此类问题。
【想第一时间了解安防行业的重磅新闻吗?请立即关注中安网官方微信(微信号:cpscomcn)——安防行业第一人气微信,万千精彩,千万不要错过!!!
网友评论
共有0条评论 点击查看全部>>24小时阅读排行
本周阅读排行